
End-of-Day Momentum in the Cross-Section and
Option Hedging

Heiner Beckmeyer∗, Mathis Moerke†

This version: January 07, 2021

Abstract

Hedging activities by option market makers can have a nontrivial impact on the
price of the underlying. In this study, we show that delta-hedging their single stock
option inventories, options market makers elicit temporary price pressure on the
underlyings’ stock prices in the last half hour of a trading day. Our estimated effect
is economically large. Establishing delta-neutrality around the market close causes
return momentum or reversal of 18 basis points for each one percentage point move
in the underlying until half an hour before trading close. The direction is determined
by the interaction between the aggregated gamma exposure of option market makers
and the return until 30 minutes before market close. Interestingly, our results are
more pronounced for stocks with high market capitalization. Information-based
explanations are not driving our results, suggesting a non-informational channel
through which option markets affect underlying stocks.
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1. Introduction

The hedging activity of option market makers has recently garnered a lot of attention,

and has attracted negative press coverage for increasing selling pressure during already

turbulent times.1 Just recently, the hedging activity of option market makers was blamed

to increase the violent stock swings during the March 2020 Covid-19 selloff. The Wall

Street Journal wrote:

“Investors searching for clues on what drove the back-to-back drops in the stock

market are pointing to the options market as a contributor, saying hedging

activity by traders may have exacerbated the decline.”

Wall Street Journal, Feb. 27, 20202

While a growing academic literature has evolved around the effects of option market

activity on the price of the underlying, much is left unexplained. For example, while it

is by now widely understood that options are non-redundant and may directly influence

the price of the underlying (Black, 1975), we lack a clean quantification of these effects in

individual stocks, and how they relate to intraday effects. Option market makers’ hedg-

ing rules mostly relate to neutrality to movements in the underlying. That is, dynamic

hedging of written option positions leads to them buying the underlying after previous

price appreciation and selling it after previous price depreciation. Along the same lines,

delta-hedging a purchased options positions involves selling the underlying after the price

has risen and buying the underlying after the price has decreased. The most likely mar-

ket participants that periodically engage in delta-hedging option positions are naturally

market makers, but also certain hedge funds and volatility arbitrageurs.

We hypothesize that these delta-hedging activities occur mostly in the last half hour

of a trading day, i.e. start taking place around 15:30 each day. Baltussen, Da, Lammers,

and Martens (2020) provide several reasons why delta-hedging should take place close

to the end of the trading day. First, previous studies have indicated that it is optimal

to only partially hedge after a large intraday price movement, hence requiring additional

hedging afterwards (Clewlow and Hodges, 1997). Second, liquidity and volume patterns

are attractive at the open and close, as previous studies have documented a U-shape

intraday volume pattern (Andersen and Bollerslev, 1997). Third, delta-hedging might

reduce overnight positions in the underlying and thereby overnight or gap risks. Fourth,

regulations such as BIS capital requirements make it costly to hold overnight positions

due to higher capital costs and investment frictions. And lastly, investment products

that seek to deliver a multiply of the underlying market’s daily movement, e.g. leveraged

1See for example Davies (2019).
2https://www.wsj.com/articles/the-invisible-forces-exacerbating-market-swings-

11582804802
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ETFs, are benchmarked at closing prices. The pattern of option market makers’ selling

and buying within the last half hour implies that hedging short option positions leads to

a continuation of the price movement of the day during the last half hour. Contrarily,

hedging purchased options induces price movement reversals.

We start by showing that individual stocks exhibit intraday return momentum when

considering returns in the last half hour of a trading day to the return until 15:30,

which includes the overnight return. This effect is highly significant statistically and

economically large. Next, we link this intraday return momentum to a measure of market

maker hedging pressure, quantifying the amount an option market maker would have to

trade in the stock to stay neutral to future movements in the underlying, given the price

change until 15:30. Consistent with theory, a negative Γ-exposure of the market maker in

stock i is associated with exacerbated intraday momentum for that same stock. Likewise,

for a positive net Γ-exposure, we observe a dampening return effect in form of relative

mean reversion.

The effects of market maker hedging on the price of the underlying are more pro-

nounced for large stocks. The market size of the underlying stock seems to play a signif-

icant role in understanding market maker hedging. We argue this to be driven by a lack

of direct hedging with the underlying of position sizes in smaller issues. Instead, market

makers may choose to opt for a beta-hedge with the help of some broader market index,

which directly covers multiple stocks on the book and may be cheaper to implement.

We further show that the size of the underlying market, measured as the average trading

volume in USD relative to the market capitalization, is inversely related to the magnitude

of our effects, with little change in the statistical significance. Likewise, the dollar open

interest relative to the market capitalization also shows an inverse relationship. These

findings suggest that the effects of a market maker hedging pressure of similar magnitude

has stronger price effects for a) stocks with relatively little trading, and b) for stocks with

a shallower option market. Larger and deeper option markets may be characterized by

more dispersion in the trade intent, which ultimately leads to more buyer-writer pairs

arising between end customers, leaving less inventory to be absorbed by market makers

and arbitrageurs. This in turn would of course also decrease the amount of required

intraday hedging by these investor groups.

We further check the validity of our identification procedure of likely market maker

hedging of their option portfolios, by contrasting our finding with option market predic-

tors previously proposed by the literature. Roll, Schwartz, and Subrahmanyam (2010)

propose the trading volume in the option relative to the market of the underlying as a

predictor of future stock returns, and Blau, Nguyen, and Whitby (2014) find predictive

power for the put-to-call ratio. Neither predictor explains the explanatory power of mar-

ket maker hedging pressure, suggesting that the hedging channel is a novel way through

which option trading temporarily affects stock returns.
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To establish that we are picking up trading effects not driven by information processed

in the options market, but rather mechanical returns due to hedging with the underlying,

we investigate the persistence of these effects. The returns are more than reversed in the

first half trading hour of the next day, making clear that the phenomenon is temporary.

As a second step, we include the value-weighted market return until 15:30 on a target

day as a secondary predictor. We find that the intraday momentum pattern is in fact

an average market momentum, driving all stocks simultaneously, while individual stock

returns exhibit mean reversion relative to the market return. This unites the literature

on cross-sectional mean reversion by Heston, Korajczyk, and Sadka (2010), and time-

series market momentum, as in Gao, Han, Zhengzi Li, and Zhou (2018) and Baltussen

et al. (2020). We can reconcile the seemingly contradictory evidence provided by the two

strands of literature, in that the two phenomena are one and the same – a benefit of our

panel regression setup. The impact of market maker hedging activity is untouched by

this detour.

To rule out other explanations and better understand the intraday hedging phe-

nomenon we undertake a battery of robustness and sanity checks. Results are relatively

homogeneous across different industries, and stronger in size during recessions. The same

effect is observed during the great financial crisis. Focusing on the dissemination of earn-

ings and company news, we find little effect of both, ruling out that our findings are

related to the prevailing information density about individual stock returns.

While our statistical results are strong and robust, the economic significance remains

unanswered. For this, we employ a trading strategy, which contrasts a long-only in-

vestment during the last half hour of a trading day to investments conditional on the

cross-sectional dispersion of our hedging pressure proxy. We find a significant outperfor-

mance relative to a simple buy-and-hold strategy in the last half hour of a trading day,

with an annualized Sharpe-ratio above 4 and a 2/3 chance of a successful trade. These

results are more significant than in the case of Equity Futures, as discussed in Baltussen

et al. (2020), but require investments in large baskets of stocks, conditioned on the mag-

nitude of their Γ-imbalance, which may prove difficult in a realistic market environment.

For a partial remedy of this observation, we redo our trading analysis for the subset of

the 20% largest stocks, and achieve comparable returns. Once we take the impact of

transaction costs into account following Frazzini, Israel, and Moskowitz (2018), results

vanish, as expected for a strategy with 100% daily turnover. This is still suggestive of

the economic magnitude that market maker hedging activity poses on the underlying’s

price.

Our work relates to the literature concerned with effects of option markets on the

underlying stock price dynamics. The literature generally distinguishes between two

channels through which option trading may have an impact on the price of the under-

lying. Hu (2014) provides evidence that the information found in market makers’ initial
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delta-hedges is impounded in and significantly alters the price of the underlying. Other

studies advocating an informational channel are Cremers and Weinbaum (2010) and Pan

and Poteshman (2006). However, a non-informational channel may also be at work. Ni,

Pearson, and Poteshman (2005) and Golez and Jackwerth (2012) document that rebal-

ancing and unwinding of option market makers’ delta hedges on or very close to expiration

drive the prices of individual stocks and stock index futures towards option strike prices

on option expiration dates. Lately, Ni, Pearson, Poteshman, and White (2020) analyze

the effects of Γ-imbalance on absolute returns and the autocorrelation of returns, based

on theoretical models that predict a negative relation between stock volatility and Γ-

imbalance.3 Whereas Ni et al. (2020) resort to daily data, Barbon and Buraschi (2020)

concentrate on intraday price paths. They find that Γ-imbalance is negatively related

to intraday volatility and intraday autocorrelation of returns in case of single stocks and

stock indices. Moreover, they document an impact of Γ-imbalance on the frequency and

magnitude of flash crashes. Finally, Baltussen et al. (2020) show that intraday momen-

tum in many Futures contracts concentrates on days with negative Γ-exposure of option

market makers.

A different, but related portion of the literature deals with the effects of market maker

inventory. Gârleanu, Pedersen, and Poteshman (2009) have provided path-breaking work

on how demand pressure affects option prices. A closely related study is by Fournier and

Jacobs (2020). Johnson, Liang, and Liu (2016) investigate the forces behind the usage

of S&P 500 index option and conclude that unspanned crash risk drives much of their

demand. Continuing this investigation, Jacobs and Mai (2020) find a tight integration

between both prices and demand in S&P 500 and VIX options. What is still missing

in this direction, is a comprehensive study of the integration between index and equity

options. In the study at hand, we deal with the impact of market maker inventory

management on the underlying for the case of single equities.

We also tie into the literature on intraday return patterns. We find high-frequency re-

turn continuation in the cross-section of stock returns, consistent with evidence provided

by Gao et al. (2018) and Baltussen et al. (2020). Both studies focus on aggregate invest-

ment vehicles, such as ETFs and index Futures. Gao et al. (2018) show that their effects

are stronger on days with elevated volatility, which are typically also accompanied by

higher trading volume. In the cross-section of stocks, Komarov (2017) finds that stocks

performing best in the first half of the day will likely lose in the second half if controlled

for market returns. In line with this, we find the intraday momentum pattern we pick

up to be connected to momentum in the aggregate market composite. Another study on

short-term return reversals is Heston et al. (2010). The authors show that the returns

of a half-hour period have predictive power over the same half-hour periods for up to 40

3For a theoretical foundation, see among others Frey and Stremme (1997), Frey (1998), Sircar and
Papanicolaou (1998), Platen and Schweizer (1998), Wilmott and Schönbucher (2000).
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days in the future, when controlling for the impact of the market. They relate this to the

usage of trade mechanisms by institutional traders, designed to limit the relative price

impact of their orders. Further studies analyzing the high-frequency behavior of stock

returns are Bogousslavsky (2020), Hendershott, Livdan, and Rösch (2020) and Lou, Polk,

and Skouras (2019), with an emphasis on the distinction between overnight and trading

periods.

2. Data and summary statistics

Our analysis requires merging multiple databases to analyze the high-frequency im-

pact of market maker hedging activity. We provide a discussion of our data sources and

the variables of interest, and talk about summary statistics.

2.1. Data sources

We use standard data sources throughout our analyses. We obtain daily U.S. individ-

ual stock options via Ivy DB US from OptionMetrics from January 1996 to June 2019.

Our options data set includes the daily bid and ask quotes, implied volatility, trading

volume, open interest and Greeks for each option contract. As individual stock options

are of American type, implied volatility and Greeks are calculated via binomial trees by

OptionMetrics.

Trading volume, shares outstanding and closing prices of the underlying stocks are

taken from the Center for Research on Security Prices (CRSP). We restrict our analysis

to stocks with CRSP share code 10 and 11, where the primary exchange is either NYSE,

AMEX or NASDAQ, and the exchange code is 1, 2, 3, 31, 32, and 33. Information on

any type of distribution (e.g. dividends and stock splits) is also obtained from CRSP.

We match data from CRSP with our options data via the matching algorithm provided

by WRDS.

Intraday stock price data is obtained from TAQ. We use standard cleaning procedures

and match intraday trade prices with CRSP to obtain PERMNOs as unique identifiers.

More details are given in Appendix A. Equipped with intraday prices, we calculate intra-

day returns relative to the previous day’s closing price. Following standard practice in

the literature (see Lou et al., 2019), we assume that corporate events that mechanically

impact prices, e.g. dividend payments and stock splits, take place overnight and are real-

ized at the time of the first trade on the target date. If a delisting occurs as reported by

CRSP, we assume that the delisting amount is realized at the respective day’s close. In

an alternative specification, we calculate overnight returns as reported by CRSP, keeping

the intraday information found in the TAQ database untouched. This does not alter our

results.
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We source earnings announcement days from Compustat and I/B/E/S. Whenever

the announcement date for the same stock differs between Compustat and I/B/E/S, we

follow Dellavigna and Pollet (2009) and use the earlier date. Compustat and I/B/E/S

are matched to our CRSP data via the matching algorithms provided by WRDS.

Finally, we use the Dow Jones version of Ravenpack News Analytics and its sentiment

scores to identify days with significant news for each underlying. We restrict our news

sample to articles which are highly relevant for a particular stock, i.e. a reading of 100

for Ravenpack’s relevance score. Furthermore, we only include news which are highly

positive (sentiment score above 0.75) or highly negative (sentiment score below 0.25).

Our sample comprises 6,541 individual stocks and 5,912 trading days. As underly-

ing stocks enter our sample once they are tradable and optionable, our final panel is

unbalanced by construction with a total of 12.3 million observations.

2.2. Gamma Imbalance

We measure the market maker’s Gamma imbalance by looking at the aggregate open

interest for options on underlying i. Let V (t, S) denote the value of an option contract.

∆(t, S) = ∂V (t,S)
∂S

is the first derivative of the option price with respect to the underlying,

whereas Γ(t, S) = ∂2V (t,S)
∂S2 measures the change of ∆(t, S) for changes in S. In case option

market participants want to neutralize their exposure to movements in the underlying due

to a an outstanding option position in the portfolio, they engage in delta-hedging, which

requires buying or selling −∆(t, S) shares of the underlying. As ∆(t, S) changes over time

and with the level of S, the hedge has to be adjusted periodically. If Γ(t, S) is low, ∆(t, S)

moves only slightly, and adjustments to maintain delta-neutrality require little trading in

the underlying. However, if Γ(t, S) is highly negative or positive, ∆(t, S) is very sensitive

to movement in the underlying, and the amount of trading in the underlying required to

stay delta-neutral increases.

In principle, derivative markets are zero-sum games. For each option, there exists

a buyer and a seller. Therefore, the aggregated Γ(t, S) on each option is zero across

the purchaser and seller. However, we assume that one party in each option transaction

pursue an economic intention preventing it from delta-hedging. This entails investors

buying puts as a hedge against downside risks or writing calls to generate income on

existing stock positions. In fact, a large craze since the financial crises were so-called

call overwriting strategies, which have also been popular among large pension funds, and

now fallen out of favor.4. We refer to these market participants as end customers. The

counterparty to end customers are market makers, which are obliged to uphold liquidity

in the options market and facilitate the efficiency of trades. Contrary to end customers,

4https://www.bloomberg.com/news/articles/2020-08-06/a-once-booming-options-

strategy-on-wall-street-is-misfiring
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we assume that option market makers engage in delta-hedging, with daily adjustments to

their hedges. Precisely, we assume that all option trades are facilitated by option market

makers and the latter hedge their option delta-exposure.

To estimate a stock-by-stock Γ imbalance, we follow Barbon and Buraschi (2020) in

the assumption that end customers are typically long in Put options and short in Call

options for individual equities.5 The authors provide convincing evidence that option

strategies used by insurance companies follow this scheme. Lakonishok, Lee, Pearson, and

Poteshman (2006) provide evidence that call writing is more prominent than purchasing

calls across all option market participants except for market makers. Furthermore, Cici

and Palacios (2015) analyse option positions of mutual funds and find that the majority

of their option positions are written single stock calls, followed by purchases in single

stock put options.

As counterparties to end customers, we therefore assume that market makers are long

in call and short in put options. As Γ(t, S) varies with time to maturity T and strike K,

we first compute the dollar gamma for each option contract. For a call (C) option on day

t with strike price K and maturity T , the dollar gamma Γ$(t, S)C is calculated as

Γ$(t, S)CK,T = Γ(t, S)C ×OICK,T × 100× S, (1)

where Γ(t, S)C is the option’s gamma, OICK,T denotes the open interest, 100 is the contract

multiplier of the option, and S is the time-t price of the underlying.

Similarly, for a put (P) option on day t with strike price K and maturity T , the dollar

gamma Γ$(t, S)P for the maker maker is calculated as

Γ$(t, S)PK,T = −1× Γ(t, S)P ×OIPK,T × 100× S, (2)

where Γ(t, S)P is the option’s gamma, OIPK,T denotes the open interest, 100 is the contract

multiplier of the option, and S is the time-t price of the underlying. Note that we multiply

by −1 to reflect the net-short position of market makers in put options.

For the aggregated gamma imbalance for stock i at time t, denoted by ΓIBi (t, S), we

take the sum over all calls and puts in the market, i.e.

ΓIBi (t, Si) =

(∑
K,T

Γ$(t, Si)
C
K,T +

∑
K,T

Γ$(t, Si)
P
K,T

)
︸ ︷︷ ︸

(?)

× Si
100
× 1

ADVi,t
. (3)

(?) in Equation (3) denotes the dollar gamma imbalance, aggregated over all option

contracts for stock i and time t. Precisely, it is the dollar amount option market makers

need to trade in stock i for each one-dollar move in stock i’s price. By multiplying (?)

5Baltussen et al. (2020) make the same assumption in case of S&P 500 options.

7



with the underlying’s price divided by 100, we express the dollar gamma imbalance for

a one percent move in Si. This facilitates comparison in our cross-sectional analyses.

Finally, we scale by the average dollar trading volume, ADVi,t, computed over the last

month.6 Thereby, we express the market maker’s gamma imbalance as a portion of the

typical trading in the stock to obtain a timely proxy for the potential price impact of

hedging adjustments.

Consider the case that ΓIBi,t for stock i at time t is negative and option market makers

want to maintain a delta-neutral position, i.e. the overall delta of their options portfolio

and the underlying stock should equal zero. As the gamma imbalance is negative, option

market makers need to sell the underlying if the underlying has declined as the option

delta has decreased, and buy the underlying if it has appreciated as the option delta has

increased. Along the same lines, delta-hedging a positive gamma position leads to selling

the underlying if it appreciated and buying it after it has decreased. An illustration of the

four cases is given in Table 1. In our baseline specification, we assume that option market

makers engage in re-hedging their positions in the last half hour of a trading day.7 If the

aggregate gamma for a stock is negative, delta-hedging contributes to intraday momentum

in a stock, that is, if the return until 15:30 is negative (positive), hedging has the effect of

continuing the downward (upward) movement in the last half hour. On the contrary, if

gamma is positive in the aggregate, delta-hedging leads to intraday reversal, dampening

the return movement until hedging begins.

Table 1: Effect of ΓHP on last half hour’s return
The table depicts the interaction of gamma imbalance ΓIB and the return until the last
hour of the trading day. It visualizes the effect of gamma hedging pressure, as defined in
Equation (4), on the return in the last half hour of the trading day.

rclose−1→15:30 > 0 rclose−1→15:30 < 0

ΓIB(t− 1, S) > 0 ΓHP > 0⇒ r15:30→close ↘ ΓHP < 0⇒ r15:30→close ↗

ΓIB(t− 1, S) < 0 ΓHP < 0⇒ r15:30→close ↗ ΓHP > 0⇒ r15:30→close ↘

We join the information of ΓIB and rclose−1→15:30 to assess the total trading relative to

the average dollar volume market makers would have to undertake to adjust their hedge

positions to regain delta neutrality at market close. We define the hedging pressure of

6As Appendix B shows, it is inconsequential to our main results if we compute the average dollar
trading volume over weekly or quarterly horizon.

7Anecdotal evidence in favor of this assumption is given in Li (2019).
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stock i as the interaction between ΓIB and rclose−1→15:30, expressed in percent:

ΓHPi,t = 100× ΓIBi (t− 1, Si)× riclose−1→15:30. (4)

ΓHP is our main variable of interest. It effectively combines the information of the

aggregate position adjustment in hedge positions to maintain delta-neutrality, and the

signal in form of intraday returns, which determines how much hedging is actually re-

quired. As Table 1 visualizes, the negative reading of ΓHP is thus directly interpretable

as additional buying pressure originating from market makers, while a positive reading

implies additional selling pressure in the last half trading hour.

2.3. Cross-Sectional Hedging Pressure

In Figure 1 we show the cross-sectional distribution over time of ΓIB and ΓHP side-

by-side. The dark blue line represents the cross-sectional median. It is above zero for ΓIB

on most days, suggesting that end customers engage more in underwriting call options

than they demand downside protection through equity put options. An alternative way

to hedge the downside exposure through option positions is the use of index put options,

which may be preferred, as they provide indirect protection of a larger portion of the

portfolio. The findings by Gârleanu et al. (2009) suggest that end customers trade more

in equity calls than puts, which is in direct contrast to position sizes in index options.

The median for ΓHP is close to zero at all times, as the cross-sectional median return

until 15:30 is close to flat.

[Insert Figure 1 Near Here]

Turning to the cross-sectional dispersion, the dark teal area in Figure 1 shows the

25th and 75th percentile. For ΓIB we find typical values between 0% and +1.5% again

suggesting that the gamma exposure of market makers tends to be positive. Periodically

we observe significant spikes and contractions, most notably after the financial crisis,

which brought a general dry up of option market liquidity that is further amplified in

the case of individual equity options. The light teal area represents the 10th and 90th

percentile of the cross-sectional distribution. Here the spikes and contractions are more

pronounced, but generally follow a similar pattern. We find negative ΓIB for some stocks,

ranging as low as −1%, as measured relative to the average dollar trading volume of the

last month. For these stocks, end consumers request more downside protection than

they engage in call underwriting. Following the line of reasoning in Section 2.2, we

expect these stocks to exhibit a return continuation driven by the option market maker’s

gamma exposure.

The cross-sectional dispersion of ΓHP is much more homogeneous over time. The 25th

and 75th percentile (in dark teal) form a tight band around the cross-sectional median,
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ranging from −1% to around +1%. Notably, we observe a slight contraction in the

measure towards the end of our sample, which we attribute to less dispersion in intraday

volatility patterns. The 10th and 90th percentile show more movement, contracting

somewhat in 2003 and after the financial crisis. The general picture, however, is this:

the cross-sectional distribution of option market maker hedging pressure is stationary

over time. One would thus expect a consistent effect of their hedging activity over time,

despite strong variation in the overall holdings by market makers. While holdings (and

thus ΓIB) contract during times of crises, the higher return volatility during these periods

exacerbate the required position sizes to stay delta-neutral, which effectively offsets the

reduced option inventory. Since market makers seek to be delta-neutral by the end

of a trading day, and particularly over night, they lack the leeway of splitting larger

share transactions over multiple days, as advocated by ...8 Using panel regressions, we

determine the impact of market maker hedging activity on the underlying’s price in the

next section.

3. Intraday Momentum and Market Maker Hedging

We first document in how far the intraday momentum found in Baltussen et al. (2020)

transfers over to the cross-section of stock returns. To do so, we run unbalanced panel

regressions of the return for stock i on target day t from 15:30 until market close on the

return until 15:30, which includes the overnight return from the previous day’s close. The

figure below summarizes our empirical setup for target day t:

close open close− 30 close open open+ 30

rclose−1→15:30 r15:30→close ropen→10:00

Day t− 1 Day t Day t+ 1

To assess the effects of rclose−1→15:30 on r15:30→close, we run regressions of the form:

ri15:30→close = β0r
i
close−1→15:30 + Entityi + εi,t (5)

Throughout our analysis, we cluster standard errors both by date and entity to account

for differences in the dispersion of returns over time and across assets. Because we have

a sufficient number of clusters, this procedure leads to unbiased errors (Petersen, 2008).

We also account for the impact of common shocks following Thompson (2011). Returns

8For a further discussion of this, see Heston et al. (2010).
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in the regression are weighted by each stock’s market capitalization on day t − 1 to

account for stylistic differences in large and small stocks. To see why this is important,

Figure 2 shows the realized annual volatility based on 5-minute returns for the two time-

periods considered. To highlight the differences between large and small stocks, we split

our universe by the median market cap in the last month. Intraday variance is inversely

related to the size of the company. With value-weighting, we minimize the cross-sectional

variance (Fama and French, 1993), yielding more precise estimates. Additionally, options

are typically introduced sooner for large stocks, which puts more weight on assets for

which we have more observations.9 An alternative specification scales returns by an ex-

ante measure for stock i’s volatility, similar to Moskowitz, Ooi, and Pedersen (2012).

We conduct this analysis, which yields comparable, albeit slightly stronger results, in

Appendix C. We further include entity fixed effects in the regression, to account for

differences in the mean returns of different stocks (Huang, Li, Wang, and Zhou, 2020).

We are interested in the impact of option market maker hedging pressure on the price

path of the underlying. To establish whether intraday return patterns are also found

in the cross-section of stocks, we follow Equation (5) and regress single stock returns

in the last half hour on returns until 15:30, which include the overnight return from the

previous close. Results are given in Model (1) of Table 2. Intraday momentum carries over

to individual stock returns, in that we find significant evidence of a return continuation

in the last half hour for the average stock. A 1% return from last day’s close to 15:30

today is on average followed by an additional return of 0.66% in the last thirty minutes.

Identifying a common effect across the 6551 entities considered is a very involved task,

due to the existence of strong idiosyncrasies. With this in mind, the intraday momentum

in single equities is remarkably strong, despite a lower estimate compared to the results

on equity market futures in Baltussen et al. (2020).

[Insert Table 2 Near Here]

Since our interest lies primarily in understanding whether intraday returns are signif-

icantly altered by market maker hedging activity, we next regress the returns in the last

half hour on the market maker’s gamma imbalance ΓIB (Model 2):

ri15:30→close = βIBΓIBi,t−1 + Entityi + εi,t, (6)

ΓIB is the total dollar amount the option market maker would have to expense to stay

∆-neutral for a 1% move in the underlying relative to the average transacted dollar

volume in the last month. While ΓIB has been shown to exert significant influence on

return variation (Ni et al., 2020; Barbon and Buraschi, 2020), we find no relation to

9Figure 3 shows histograms of the average days individual PERMNOs are included in the sample,
conditional on the company size.
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actual returns in the last 30 minutes. This comes as no surprise. First, signed returns

are much harder to predict than measures of variation. Second, ΓIB does not account

for the actual return direction, thereby mixing the effects of buying and selling pressure

due to the hedging activity of option market makers. Positive ΓIB introduces additional

buying pressure originating from the market maker for a negative return until 15:30, but

additional selling pressure if rclose−1→15:30 > 0. The opposite holds for ΓIB < 0. Therefore,

one would expect the effects to cancel out when used to predict returns, resulting in an

insignificant coefficient.

Adding ΓHP as a direct measure of signed hedging pressure in the market circumvents

this issue. Results are presented in Model (3):

ri15:30→close = β0r
i
close−1→15:30 + βHPΓHPi,t−1 + Entityi + εi,t (7)

This way we seek to understand the effects of market maker hedging, given a certain

magnitude for the returns until 15:30, rclose−1→15:30. To this end, a positive (negative)

reading of ΓHP introduces additional selling (buying) pressure by the market maker, if

regulatory and risk considerations require her to close the day delta-neutral. We again find

significant evidence of intraday momentum in the cross-section of stock returns. Effects

are further amplified once we account for the hedging pressure by market makers. A 1%

return until 15:30 is now followed by an additional return of around 88 basis points, at a

t-value of roughly 2.7. ΓHP provides further information about cross-sectional returns in

the last half hour of a trading day. A hedging pressure of 1% of the average trading volume

in the last month depresses r15:30→close by a highly significant 18.3 basis points (t-value of

−3.629). We have seen in Figure 1 that the cross-sectional 10th percentile of ΓHP averages

around −2.5%, introducing substantial hedging pressure for a subset of the cross-section,

which markedly adds to the intraday momentum pattern we observe unconditionally. ΓHP

provides incremental information concerning the magnitude of intraday momentum, in

that intraday momentum in individual stocks is stronger if the net Γ is negative, evident

in the negative sign of ΓHP . Likewise, hedging pressure by market makers reduces the

magnitude of single stock intraday momentum if ΓIB > 0. This conforms with the general

idea that hedges by the market maker have a destabilizing effect if the market maker is

ΓIB-negative, and a stabilizing effect if ΓIB > 0.

For completeness, we include returns until 15:30, ΓIB and the interaction between the

two, ΓHP , in a single regression framework in Model (4):

ri15:30→close = β0r
i
close−1→15:30 + βIBΓIBi,t−1 + βHPΓHPi,t−1 + Entityi + εi,t (8)

We find only marginal changes compared to Model (3). The inclusion of ΓIB seems to

be of lesser importance to understand the effects of market maker hedging compared
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to the previous return. Since ΓHP is the interaction between rclose−1→15:30 and ΓIB, we

will nonetheless from here on compare Models (1) and (4), i.e. unconditional intraday

momentum in the cross-section and the impact of market maker hedging pressure.

In a last step, we try to understand whether effects are driven by the magnitude of the

market maker’s gamma imbalance ΓIB or merely its sign. To do so, add dummy ΓIB ≤ 0

and interact it with returns until 15:30, rclose−1→15:30. We expect to see more pronounced

effects for the interaction, suggesting that market maker hedging activity has a stronger

impact on the price of the underlying if the aggregate gamma is negative. Referring back

to Table 1, the coefficient for rclose−1→15:30 now picks up differential effects of the intraday

return pattern in the first row (ΓIB ≤ 0), while the interaction with dummy ΓIB > 0

naturally corresponds to additional effects if the market maker is on average net short

gamma, i.e. for the second row in the table. The regression takes the following form:

ri15:30→close = β0r
i
close−1→15:30 + βIB<0(ΓIB ≤ 0)× riclose−1→15:30 + Entityi + εi,t (9)

The empirical results strongly support our hypothesis: the inclusion of the dummy inter-

action suppresses the statistical significance of outright intraday momentum and nearly

halves its coefficient, which is now at 0.398 (t-value of 1.8). This suggests only marginally

significant intraday momentum for positive ΓIB, i.e. a positive gamma exposure of op-

tion market makers. The interaction is statistically significant at, suggesting very large

intraday momentum for underlyings in which the option market maker is negative in the

aggregate. Summing the two coefficients yields the average intraday momentum slope

for a negative gamma exposure. It amounts to a large return continuation of the return

until 15:30 (coefficient of 1.605).

The five regression specifications provide convincing evidence of the effects of market

maker hedging activity on individual stock momentum. We confirm a stabilizing effect for

a positive Γ-exposure, and a further acceleration of the return direction if the Γ-exposure

of market makers in individual stocks is negative. The intraday momentum pattern in the

last half hour is thus intimately linked to the existence and magnitude of market maker

hedging activity. In fact, intraday momentum is concentrated in stocks with ΓIB < 0.

Next, we will discuss potential drivers of this connection.

3.1. Market Capitalization, Market Size, and Γ-Effects

We are interested in whether the influence of option market maker hedging pressure

differs for stocks with different characteristics. As a first test, we examine differences in

the effects of hedging pressure for stocks of different market sizes. Large caps not only

exhibit lower volatility on average, but the cross-sectional dispersion of volatility is also

lower compared to small stocks (see Figure 2). At the same time, large caps are more

likely to enjoy a liquid and deep options market. We therefore seek to understand whether
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our results that the hedging pressure of option market makers influence underlying stock

returns is connected to the size of the underlying stock, and the size of the option market.

In Table 3 we compare intraday momentum and market maker hedging effects between

small and large stocks, with a cutoff at the median market capitalization in the last

month. From column (1) we learn that intraday momentum also exists for small stocks,

with a slightly smaller magnitude on average (coefficient of +0.594). This effect is still

highly significant with a t-value of 3.721. Once again we observe a slight increase in this

coefficient once we include ΓHP , which itself is statistically significant at the 5%-level.

Interestingly, the magnitude of the coefficient is much lower at −0.047, or about a third

of what we observe for the full sample. A plausible explanation for this is that market

makers opt to hedge baskets of smaller issues jointly, through the use of index options.

The coefficient of ΓIB is once again insignificant.

[Insert Table 3 Near Here]

Our results that market maker hedging pressure exerts an influence on the price of

the underlying is driven by the impact of large caps. Not only is the intraday momentum

coefficient larger, at +0.662% without the inclusion of ΓHP and +0.908% with the inclu-

sion, the impact of ΓHP itself is more pronounced as well. A 1% hedging pressure leads

to additional selling pressure in the underlying of −0.193%, which is highly significant

with a t-value of roughly −3.6. While many cross-sectional effects are concentrated in

smaller stocks, intraday momentum, and more importantly the impact of market maker

hedging, is more pronounced in the returns of large stocks. In section 4 we examine the

economic significance of trading on ΓHP , and note that the large stocks for which we find

a highly significant impact, are also those which enjoy more frequent trading, at higher

liquidity.

We next turn to the influence of the size of the market of the underlying and the

corresponding option market relative to the cross-section. In columns (1) & (2) of Table 4

we split the sample first by the cross-sectional median dollar volume transacted in the

underlying over the last twelve months. A larger market for the underlying should buffer

the relative price impact of market maker hedging pressure, leading to smaller coefficient

estimates. In columns (3) & (4) we do a similar median sample split, this time with

respect to the dollar open interest relative to the market capitalization of the underlying,

to gauge the size of the options market for stock i.10 A larger option market in general

has an ambivalent impact on our results. On the one hand, larger option markets may

exert more pronounced hedging pressure by the market maker, if she has to absorb an

absolutely larger amount of option positions. This should make the impact of intraday

hedging pressure on returns of the underlying more severe. On the other hand, this larger

10This measure is defined as
∑

K,T OIK,T×100×S

MarketCap . We use the average over the last year to limit the
influence of outliers and thereby limit the amount of migration at the split point.
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option market may also be characterized by more trade between end customers. This

would alleviate some of the hedging pressure, which could in turn also lead to smaller

coefficients of ΓHP .

[Insert Table 4 Near Here]

We first reject the idea that a larger trade volume in the underlying increases the

impact of market maker delta-hedging. Instead, the coefficient in the “High $Vol” sub-

sample is about 50% larger compared to the low underlying dollar volume sample. Both

are highly significant with t-values below −3. The intraday momentum follows a similar

pattern in that it is more pronounced for larger underlying markets. With respect to the

relative dollar open interest, we find much more pronounced effects in the “Low $OI”

sample, with a coefficient of −0.44 vs. −0.176 for the “High $OI” sample. Both are

highly significant with t-values of −4.3 and −3.5. This is in line with the second part of

our hypothesis about the effects of the option market size. Larger option markets are not

characterized by stronger hedging pressure on the underlying, but the opposite. Other

specifications of the (relative) size of the underlying and option market have led to similar

conclusions that, contrary to the concentration in large caps, the market size has little

impact on the existence of hedging pressure on the underlying’s price, but determines the

size of the effect.

3.2. Reversal at the Next Open

If the impact of market maker hedging is driven mechanically and does not reflect

fundamental information about the underlying, we should expect to see a reversal of the

effects at the next open. In fact, even without explicitly considering market maker hedging

pressure, Baltussen et al. (2020) find significant reversal in multiple Futures markets on

the following three days. Here, we also include the impact of ΓHP on day t − 1 as an

additional explanatory variable besides returns in the last half hour, to directly analyze

the reversal due to the hedging activity by market makers. We seek to explain the return

in the first half hour until the open of trading day t+1, to capture information processing

by the remaining market participants, under the assumption that the mechanically-driven

return movement by market makers is reversed relatively quickly. Our regressions follow

Equations 5 – 8.

[Insert Table 5 Near Here]

The results in Table 5 show clear evidence of such a reversal in the cross-section of

stock returns. Not only is the closing return on day t significantly negatively related to
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the return in the first half hour of the following day11, but the hedging pressure, ΓHP

now also shows a positive slope coefficient of comparable size to that in Table 2. Both of

these effects are highly significant at any conventional level of significance. The empirical

evidence suggests that the effects of market maker hedging are reversed at the start of

the next trading day, constituting a temporary drift from the fundamental value of the

underlying – the non-information channel of option trading. This drift is reversed at the

next open.

3.3. Market vs. Cross-Sectional Momentum

We have seen that individual stocks exhibit intraday momentum, when returns in the

last half hour are compared to returns until 15:30. This time-series intraday momentum

is similar to the effects found in Gao et al. (2018) and Baltussen et al. (2020) in the

case of Equity ETFs and Futures, but differs from the analysis in Heston et al. (2010).

The authors are interested in cross-sectional differences in returns and find patterns of

half-hour returns significantly predicting returns of the same half-hour up to 40 days in

the future. To determine whether the cross-sectional intraday momentum is driven by

an average momentum, i.e. a time-series momentum, or by cross-sectional differences as

advocated by Heston et al. (2010), we include the returns on a value-weighted market

proxy as an explanatory variable.12

[Insert Table 7 Near Here]

Consistent with the idea that intraday momentum in individual stocks is driven by an

average time-series momentum, the coefficient to the market return is large and highly

significant (see Table 7). At the same time, the coefficient to rclose−1→15:30 switches

signs, from positive to negative, indicating a reversal in the last half hour relative to the

market return. This corroborates the study by Heston et al. (2010) that returns exhibit

intraday reversals if the market impact is accounted for. This switch in sign, however,

has no implications for our result that the market maker hedging pressure significantly

and negatively impacts individual stock returns in the last half hour of a trading day.

The information inherent in ΓHP seems largely unrelated to the overall market return

until 15:30, and impacts both the cross-sectional and time-series dimension of individual

stock returns.

11The larger estimates arise as we are now comparing half-hour to half-hour returns, instead of 6-hours
to half-hour returns as in the analyses before

12Note that this procedure effectively forces the market effect to average across all stocks in the
sample, disregarding differences in sensitivities (βs). In unreported analyses we run the same regression
with CAPM residuals, for stocks with at least 500 occurrences in our sample. The results are comparable.

16



3.4. Discussion of Our Γ Proxy

As we approximate ΓHP by the open interest in call and put options on the stock

level, our measure might pick up another driver of intraday return patterns. Although

shown to work in the cross-section of stocks, a natural candidate is the O/S ratio by Roll

et al. (2010), which represents the option-to-stock-volume ratio. Moreover, Blau et al.

(2014) show that the unsigned put volume relative to total option volume is negatively

related to next-day returns. We re-run our baseline model in Equation (8), but include

separately the O/S and put-call ratio as control variables. We measure the O/S ratio

either in share or dollar terms. Instead of the raw O/S ratios, we consider the log of it,

as it highly dispersed in the cross-section and time-series.

[Insert Table 6 Near Here]

As Table 6 shows, our results are not driven if we include any of the additional covari-

ates to our baseline specification. Precisely, the economic and statistically significance of

our variable of interest, ΓHP , remains unchanged.

4. Economic Significance

In the preceding section, we have established the importance of market maker hedging

pressure as a driver of single stock returns in the last half hour of a trading day. Next,

we assess the usefulness of the predictability by means of a trading strategy. Therefore,

we use the return up to the last half hour and the gamma imbalance of each single stock

as timing signals. More specifically, we calculate ΓHP for each single stock at 15:30 on

each trading date. Subsequently, we construct decile portfolios based on ΓHP and take

a long (short) position in the lowest (highest) decile. Stocks exhibiting a very negative

reading of ΓHP on 15:30 exhibit either a positive return combined with a negative gamma

imbalance or a negative return combined with a positive gamma imbalance. In the first

case, we expect a return continuation until market close as option market markers hedge

by buying the underlying as the underlying has risen beforehand. In the latter case, we

assume that the underlying stock mean-reverts in the last half hour. In both cases though,

we anticipate a positive return. A similar reasoning applies to take a short position into

the highest decile portfolio.

Mathematically, our strategy can be expressed as follows:

η(ΓHP ) =
∑

1{ΓHP
i <q(0.05,ΓHP )} × wi × rclose,i − 1{ΓHP

i >q(0.95,ΓHP )} × wi × rclose,i, (10)

where q(α,ΓHP ) denotes the α-percentile of ΓHPi of available stocks at day t. We choose

wi to be either equally or value weighted within each decile porfolio.

17



Panel A of Table 8 reports summary statistics on returns of our strategy. The average

total excess return is 14.74% on an annual basis when stocks are equally weighted. In case

of value weighting, the strategy yields annual excess returns of 11.99%.13 In order to get a

better understanding of the performance, we consider a benchmark strategy Always long

which takes long positions in all stocks at the beginning of the last half hour and closes

all positions at the market close on each trading day. As Panel of A Table 8 reveals,

Always long yields an annual return of 7.34% for equalling weighting the stocks. The

performance drops sharply for value-weighting to 1.49% being not significantly different

from zero. The superiority of our strategy remains in place when we take risk into

consideration. Panel A of Table 8 documents the standard deviation and Sharpe ratio.

Our equally-weighted strategy generates a Sharpe ratio of 6.23, nearly five times larger

than the comparable benchmark strategy. It exhibits also a high positive skewness of

1.18 versus 0.53 for Always long.

To show robustness, but also address concerns about the implementation of our strat-

egy, Panel B in Table 8 repeats the above analysis, but is restricted to stocks in the

highest market capitalization quintile. As shown, the results also hold for this subsample

of stocks.

Our trading strategies have so far neglected trading costs. However, this is an impor-

tant aspect as our intraday strategy exhibits by construction a turnover of 100%. Frazzini

et al. (2018) document trading costs in the range of 5bp using a large trade record over

nearly the same time span as our sample. This figure marks roughly the break-even

point for our trading strategy as the value-weighted strategy across the high market cap

quintile stocks earns 5.3bp per day.

[Insert Table 8 Near Here]

5. Understanding Market Maker Hedging Pressure

To emphasize the mechanism through which market maker hedging pressure influences

cross-sectional stock returns, we carry out a battery of additional robustness tests. More

precisely, we are interested in how far our findings relate to differing (option-)market

characteristics across industries, and how results comove with the business cycle and the

great financial crisis. Additionally, we mitigate concerns that our results may be driven

by an informational channel.

13Although we effectively hold our positions only for half an hour on each trading day, i.e. one
thirteenth of a trading day, we scale by 252 to compare to once-per-day investments.

18



5.1. Industry Sectors

Lakonishok et al. (2006) provide evidence that option trading activity of certain mar-

ket participants, e.g. retail investors, reveal preferences for special stock characteristics.

Israelov and Nielsen (2014) also suggest that option trading activity might vary with the

underlying assets’ attributes. The authors list the attractiveness of high-volatility stocks

for call-writing strategies as one of eight myths about call-writing. We conjecture that

the option demand of certain trader types might manifest themselves on an aggregate

industry level. We therefore assign each stock in our sample to one industry where the

classification is based on SIC codes and follows Kenneth French’s website. Subsequently,

we run our baseline specification in Equation (8) for each industry sample.

Table 9 summarizes the empirical results. There are several noteworthy observations.

First, statistically robust intraday momentum is only apparent in Business, Health, and

Other industry sectors. The economic magnitude of intraday momentum varies across the

three industries. It is strongest for the sector Other. Second, the effect of ΓHP on the last

half hour returns is statistically significant at least at the 5% confidence level in all five

industries. Moreover, it is statistically significant at the 1% confidence level for three out

of five industries. Third, the economic magnitude of the delta-hedging activities of market

makers on the return in the last half hour of the trading day is strong across all industries.

It is most pronounced in the sectors Health and Other, where option market maker lead

to a momentum or reversal, depending on their aggregate gamma imbalance, of more

than 23 basis points per one percentage point move in the underlying from the previous

day’s close until 30 minutes before the close. ΓHP is weakest in economic terms in the

sectors Consumer and Business, but with approximately 13 basis points still meaningful.

Our results show that delta-hedging has a pervasive impact on the underlying stock price

dynamics, regardless of the industry considered.

[Insert Table 9 Near Here]

5.2. Different Market Conditions

Chordia and Shivakumar (2002) have stressed the importance of the business cycle

on momentum returns. As the authors show, momentum strategies yield positive returns

only in expansionary periods, whereas returns during recessions are negative. Motivated

by these findings, we investigate the effect of ΓHP on the last half hour return under

various market conditions. Therefore, we split the entire sample along the business cycle

into recession and expansion days, and into the financial crisis and non-crisis periods. As

in Gao et al. (2018), we set the financial crisis from 2nd December 2007 to 30th June 2009,

whereas recession and expansion dates are taken from the National Bureau of Economic

Research.
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[Insert Table 10 Near Here]

First, we estimate Equations (5) and (8) either for NBER recession days or expansion

days and report results in Table 10. As evident from Table 10, the effect of the hedging

pressure on the last half-hour return is economically stronger during recession days com-

pared to expansion days. During expansions, option market makers hedging activities

induce a momentum or reversal of 11 basis points per one percent move in the underlying

until 15:30. During recessions, the effect increases more than six-fold, up to 76 basis

points. The coefficient on ΓHP remains significant in both subsamples, though at the

10% level during recessions, whereas at the 1% level during expansions. The change in

the level of significance might be driven by the small sample of recession days, as these

make up only 6% of the days in our sample.

As Table 11 summarizes, the results remain qualitatively and quantitatively the same

if we either exclude or focus on the financial crisis. The effects of intraday momentum

and market maker hedging pressure are amplified in times of distress, which is in di-

rect contrast to the findings of Chordia and Shivakumar (2002) for monthly momentum

strategies.

[Insert Table 11 Near Here]

5.3. Fundamental News

We have highlighted a non-informational channel through which option prices influ-

ence the dynamics of the underlying for the case of individual stocks. In related research,

several studies have pointed towards an informational channel. Black (1975) reasons that

the higher leverage inherent in derivatives makes their use appealing to investors. Pan

and Poteshman (2006) provide evidence of informed trading in options markets and its

impact on the underlyings’ stock prices. Lin and Lu (2015) suggest that analysts play

an important role in the price discovery process between option and stock markets. The

authors point towards analyst increasing the use of option trading around analyst-related

news as a driver of the options predictability on stock returns. In a recent study, Cremers,

Fodor, and Weinbaum (2020) analyse how informed traders transact in the options mar-

ket around news announcement. Overall, the authors document that informed option

trading remains profitable even after transaction costs. Consequently, one may argue

that our results are ultimately due to an informational channel if they are subsumed by

periods of earnings and news announcement releases.

In an effort to mitigate concerns about this informational channel of options trading,

we first collect earnings announcement dates from I/B/E/S and Compustat, as earnings

announcements constitute the most influential regularly occurring corporate news events.

Second, we use the Dow Jones version from RavenPack News Analytics to identify days
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with fundamental news releases for each firm in our sample. RavenPack assigns each

news article a relevance and sentiment score, among others. We keep only records where

the relevance score equals 100. Thereby we ensure that news are highly relevant for a

company. Based on the sentiment score, we classify each news record either as positive

or negative news. Having identified date t as either an earnings announcement or news

day for stock i, we focus on a symmetric two-week window around t to investigate the

effects of earnings and news releases on the connection between intraday hedging pressure

by market makers and returns. We re-run our baseline specification in Equation (8) by

excluding or concentrating on days with earnings announcements or news releases in

Table 12.

[Insert Table 12 Near Here]

As the first two columns show, the effect of ΓHP remains statistically highly significant

on days with or without earnings announcements. Furthermore, the ΓHP coefficient obeys

roughly the same order of magnitude for all specifications considered. Columns three to

five confirm that also either including or excluding the days with the most significant

fundamental news do not change our conclusions with respect to the economic magnitude

and statistically significance of ΓHP . In column (3) we rerun our main analysis restricting

the sample to start in 2000, for which we were able to obtain RavenPack data.

6. Conclusion

This paper adds to the emerging literature documenting a non-informational channel

through which option markets affect the underlying stock’s price dynamics. We find

evidence for a significant link between the returns in the last half hour of a trading day

and the aggregated dollar amount option market makers need to trade in the underlying

stocks to establish delta-neutrality. This link supports the hypothesis that end-of-day

delta-hedging of market makers elicit price pressure on the underlying stock market.

This price pressure is temporary, as the effect reverts at the next day’s open. Our results

are economically large. We measure a return continuation or reversal of 18 basis points

per one percentage point move in the underlying from previous day’s close to half an

hour before trading close. Return momentum or reversal is determined by the sign of

the return until 30 minutes before trading close and the sign of the aggregate gamma

exposure of option market makers. An added benefit is that our results concentrate for

stocks with high market capitalization, which generally enjoy more liquid trading.

Our results are not restricted to specific industries or time periods. They are neither

explained by information based alternative hypotheses. We believe that our findings are

of relevance not only for option and stock market participants, but also regulatory bodies,

as negative gamma exposure and negative previous returns can lead to downward price
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spirals. This effect intensifies during periods of general market distress, such as recessions.

Our results add to the literature on the effects of the option market.
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Table 2: Intraday Return Regressions
The table reports the results to regressing returns in the last half hour of a trading day on
returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedging pressure
ΓHP , following Equations 5 - 8. Coefficients are scaled by 100 and t-statistics are in
parentheses below. The t-statistics follow Thompson (2011) and cluster by time and
entity, as well as account for common shocks across time. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and weight
returns by the stock’s market capitalization. The sample covers 1996 through June 2019.

(1) (2) (3) (4) (5)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 0.656** 0.878*** 0.879*** 0.398*

(2.280) (2.694) (2.698) (1.797)

ΓIB 0.010 0.022

(0.362) (0.791)

ΓHP -0.183*** -0.184***

(-3.628) (-3.629)

(ΓIB ≤ 0)× rclose−1→15:30 1.207**

(2.467)

Observations 12,283,918 12,283,918 12,283,918 12,283,918 12,283,918

Entity FE Yes Yes Yes Yes Yes

SEs Robust Robust Robust Robust Robust
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Table 3: Small vs. Large Stocks
The table reports the results to regressing returns in the last half hour of a trading day
on returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedging pressure
ΓHP , following Equations 5 - 8. The sample is split by the cross-sectional median market
capitalization over the last month. Coefficients are scaled by 100 and t-statistics are
in parentheses below. The t-statistics follow Thompson (2011) and cluster by time and
entity, as well as account for common shocks across time. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and weight
returns by the stock’s market capitalization. The sample covers 1996 through June 2019.

(1) (2) (3) (4)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 0.594*** 0.621*** 0.662** 0.908***

(3.721) (3.689) (2.183) (2.624)

ΓIB 0.011 0.023

(0.706) (0.836)

ΓHP -0.047** -0.193***

(-2.002) (-3.580)

Observations 6,159,679 6,159,679 6,124,239 6,124,239

Entity FE Yes Yes Yes Yes

SEs Robust Robust Robust Robust

Market Size Small Small Large Large
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Table 4: Stocks with Varying Sizes of the Underlying/Option Market
The table reports the results to regressing returns in the last half hour of a trading
day on returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedging
pressure ΓHP , following Equations 5 - 8. The sample is split by the cross-sectional median
trading volume in the underlying over the last twelve months in columns (1) and (2). In
columns (3) and (4) we split by the median relative option market size over the last twelve

months, expressed as
∑

K,T OIK,T×100×S
MarketCap

. Coefficients are scaled by 100 and t-statistics are

in parentheses below. The t-statistics follow Thompson (2011) and cluster by time and
entity, as well as account for common shocks across time. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and weight
returns by the stock’s market capitalization. The sample covers 1996 through June 2019.

(1) (2) (3) (4)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 0.540 1.219*** 0.833** 0.930***

(1.205) (4.385) (2.282) (2.772)

ΓIB 0.053 -0.010 -0.002 0.028

(1.498) (-0.503) (-0.034) (1.048)

ΓHP -0.229*** -0.083** -0.440*** -0.176***

(-3.348) (-2.021) (-4.279) (-3.542)

Observations 6,501,921 5,781,997 6,506,838 5,777,080

Entity FE Yes Yes Yes Yes

SEs Robust Robust Robust Robust

Subsample Low $Vol High $Vol Low $OI High $OI
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Table 5: Reversal of Hedging Effects at Next Open
The table reports the economic value of timing the last half-hour market return using our
gamma measure. The strategy takes a long position in a stock when the stock’s gamma
exp is in the upper vigintile and a short position when it is in the lower vigintile. As a
benchmark, Always long denotes investing in all stocks. We consider equally weighted
(EW) and value weighted (VW) portfolios. For each strategy, we report the average return
(Avg ret), standard deviation (Std dev), Sharpe ratio (Sharpe), skewness, kurtosis, and
success rate (Success). The returns are annualized and in percentage. Newey and West
(1987) robust t-statistics are in parentheses, and significance at the 1%, 5%, or 10% level
is denoted by ***, **, or *, respectively. The sample period is from January 1996 to June
2019.

(1) (2) (3) (4)

Dependent ropen→10:00 ropen→10:00 ropen→10:00 ropen→10:00

r15:30→close -13.019*** -12.998*** -12.996***

(-6.247) (-6.233) (-6.234)

ΓIB -0.106** -0.123**

(-1.964) (-2.316)

ΓHP 0.280*** 0.284***

(4.580) (4.620)

Observations 12,281,258 12,281,258 12,281,258 12,281,258

Entity FE Yes Yes Yes Yes

SEs Robust Robust Robust Robust
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Table 6: Discussion of Γ-Proxy
The table reports the results to regressing returns in the last half hour of a trading day
on returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedging pressure
ΓHP , following Equation 8. Specification (1) adds to the baseline model in Table 2 the log
of O/S-$ as a control variable, where O/S-$ is the dollar option-to-stock volume ratio, as
in Roll et al. (2010). In specification (2), we include the log of O/S, where O/S denotes the
option-to-stock volume ratio, expressed in shares, as in Roll et al. (2010). Specification
(3) adds the put-call-ratio (PC ratio) as in Blau et al. (2014) as a control variable to
our baseline model. Coefficients are scaled by 100 and t-statistics are in parentheses
below. The t-statistics follow Thompson (2011) and cluster by time and entity, as well as
account for common shocks across time. ***, **, * denotes significance at the 1%, 5%,
10% level. We include entity fixed effects in all specifications and weight returns by the
stock’s market capitalization. The sample covers 1996 through June 2019.

(1) (2) (3)

Dependent r15:30→close r15:30→close r15:30→close

rclose−1→15:30 0.892*** 0.891*** 0.892***

(2.701) (2.699) (2.704)

ΓIB 0.021 0.029 0.024

(0.811) (1.136) (1.018)

ΓHP -0.186*** -0.186*** -0.186***

(-3.622) (-3.622) (-3.623)

log O/S-$ 0.001***

(3.565)

log O/S -0.002***

(-3.929)

PC ratio 0.005

(0.591)

Observations 9,551,686 9,551,686 9,551,686

Entity FE Yes Yes Yes

SEs Robust Robust Robust
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Table 7: Impact of Market Returns
The table reports the results to regressing returns in the last half hour of a trading day on
returns until 15:30 for the stock, rclose−1→15:30, and the market, rMclose−1→15:30, Γ-imbalance
ΓIB and market maker hedging pressure ΓHP , following Equations 5 - 8. Coefficients are
scaled by 100 and t-statistics are in parentheses below. The t-statistics follow Thompson
(2011) and cluster by time and entity, as well as account for common shocks across time.
***, **, * denotes significance at the 1%, 5%, 10% level. We include entity fixed effects
in all specifications and weight returns by the stock’s market capitalization. The sample
covers 1996 through June 2019.

(1) (2) (3) (4) (5)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 -0.884*** -0.659*** -0.658*** -1.074***

(-6.473) (-4.050) (-4.043) (-7.165)

r market vw prev 6.419*** 5.535*** 6.422*** 6.422*** 6.382***

(7.270) (6.090) (7.313) (7.312) (7.351)

ΓIB 0.013 0.024

(0.493) (0.926)

ΓHP -0.186*** -0.187***

(-3.948) (-3.956)

(ΓIB ≤ 0)× rclose−1→15:30 0.930**

(2.177)

Observations 12,283,918 12,283,918 12,283,918 12,283,918 12,283,918

Entity FE Yes Yes Yes Yes Yes

SEs Robust Robust Robust Robust Robust
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Table 8: Market Timing
The table reports the economic value of timing the last half-hour market return using our
gamma measure. The strategy takes a long position in a stock when the stock’s gamma
exp is in the upper vigintile and a short position when it is in the lower vigintile. As a
benchmark, Always long denotes investing in all stocks. We consider equally weighted
(EW) and value weighted (VW) portfolios. For each strategy, we report the average return
(Avg ret), standard deviation (Std dev), Sharpe ratio (Sharpe), skewness, kurtosis, and
success rate (Success). The returns are annualized and in percentage. Newey and West
(1987) robust t-statistics are in parentheses, and significance at the 1%, 5%, or 10% level
is denoted by ***, **, or *, respectively. The sample period is from January 1996 to June
2019.

Avg ret Std dev Sharpe Skewness Kurtosis Success

Panel A: All stocks

Strategy (EW) 14.74*** 2.37 6.23 1.18 16.30 66.97

(28.34)

Always long (EW) 7.34*** 5.44 1.35 0.53 23.27 56.25

(7.03)

Strategy (VW) 11.99*** 2.82 4.25 0.59 19.32 65.39

(20.32)

Always long (VW) 1.49 5.33 0.28 -0.23 18.51 52.21

(1.43)

Panel B: High Market Cap Quintile

Strategy (EW) 9.83*** 2.68 3.67 0.54 38.03 63.34

(17.72)

Always long (EW) 2.22** 5.14 0.43 -0.15 19.82 52.94

(2.22)

Strategy (VW) 13.53*** 3.22 4.20 0.54 17.23 65.09

(19.92)

Always long (VW) 0.84 5.45 0.15 -0.30 17.87 51.63

(0.79)
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Table 9: Effects in Different Industries
The table reports the results to regressing returns in the last half hour of a trading day
on returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedging pressure
ΓHP , following Equations 5 - 8. The sample is split by the industry classification based
on SIC codes, following Kenneth French’s website, https://mba.tuck.dartmouth.edu/
pages/faculty/ken.french/data_library.html. Coefficients are scaled by 100 and t-
statistics are in parentheses below. The t-statistics follow Thompson (2011) and cluster
by time and entity, as well as account for common shocks across time. ***, **, * denotes
significance at the 1%, 5%, 10% level. We include entity fixed effects in all specifications
and weight returns by the stock’s market capitalization. The sample covers 1996 through
June 2019.

(1) (2) (3) (4) (5)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 -0.111 0.693 1.010*** 0.625* 1.472***

(-0.418) (1.173) (2.967) (1.648) (3.146)

ΓIB 0.010 0.041 0.061 0.022 -0.040

(0.383) (1.290) (1.604) (1.129) (-1.217)

ΓHP -0.132*** -0.201** -0.132** -0.260*** -0.232***

(-3.439) (-1.992) (-2.396) (-3.244) (-3.166)

Observations 2,189,511 2,497,523 2,886,271 1,367,762 3,342,851

Entity FE Yes Yes Yes Yes Yes

SEs Robust Robust Robust Robust Robust

Industry Consumer Manuf.+Energy Business Health Other
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Table 10: Impact of Recessions and Expansions
The table reports the results to regressing returns in the last half hour of a trading
day on returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedging
pressure ΓHP , following Equations 5 - 8. The regression results are reported for NBER
expansions and recessions, respectively. Coefficients are scaled by 100 and t-statistics are
in parentheses below. The t-statistics follow Thompson (2011) and cluster by time and
entity, as well as account for common shocks across time. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and weight
returns by the stock’s market capitalization. The sample covers 1996 through June 2019.

(1) (2) (3) (4)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 0.306 0.478** 2.386** 2.651**

(1.389) (2.036) (2.075) (2.171)

ΓIB 0.028 -0.041

(1.018) (-0.237)

ΓHP -0.124*** -0.772**

(-3.752) (-2.011)

Observations 11,220,090 11,220,090 1,063,828 1,063,828

Entity FE Yes Yes Yes Yes

SEs Robust Robust Robust Robust

Subsample Expansion Expansion Recession Recession
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Table 11: Impact of Financial Crisis
The table reports the results to regressing returns in the last half hour of a trading day
on returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedging pressure
ΓHP , following Equations 5 - 8. The regression results are reported for the financial crisis
and the non-crisis period, respectively. Coefficients are scaled by 100 and t-statistics are
in parentheses below. The t-statistics follow Thompson (2011) and cluster by time and
entity, as well as account for common shocks across time. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and weight
returns by the stock’s market capitalization. The sample covers 1996 through June 2019.

(1) (2) (3) (4)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 0.211 0.365* 3.593*** 3.775***

(1.059) (1.664) (2.989) (2.990)

ΓIB 0.017 -0.106

(0.566) (-0.162)

ΓHP -0.114*** -0.661**

(-3.786) (-2.259)

Observations 11,454,915 11,454,915 829,003 829,003

Entity FE Yes Yes Yes Yes

SEs Robust Robust Robust Robust

Subsample Non-GFC Non-GFC GFC GFC
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Table 12: Impact of Fundamental Information
The table reports the results to regressing returns in the last half hour of a trading day
on returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedging pressure
ΓHP , following Equations 5 - 8. The regression results are reported for several subsam-
ples where we focus on or exclude days with fundamental information, either earnings
announcements (EA) or fundamental news releases identified by RavenPack. Specifica-
tion (1) uses the subsample for which Compustat and/or I/B/E/S do not report earnings
announcements (EA). Specification (2) excludes day-asset observations for which Com-
pustat and/or I/B/E/S report earnings announcements. Specification (3) uses the subset
for which RavenPack data is available, i.e. from January 2000 to the end of our sample.
In specification (4) we exclude asset-day observations for which RavenPack documents
either at least one negative (score ≥ 25) or one positive (score ≤ 75) news appearance,
whereas specification (5) includes only these observations. Whenever earninigs announce-
ments or fundamental news are released on day t for asset i, we exclude also a window
of 5 trading days around t for asset i. Coefficients are scaled by 100 and t-statistics are
in parentheses below. The t-statistics follow Thompson (2011) and cluster by time and
entity, as well as account for common shocks across time. ***, **, * denotes significance
at the 1%, 5%, 10% level. We include entity fixed effects in all specifications and weight
returns by the stock’s market capitalization. The sample covers 1996 through June 2019.

(1) (2) (3) (4) (5)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 1.007*** 0.509* 0.981*** 1.012*** 0.945**

(3.393) (1.658) (3.236) (3.476) (2.568)

ΓIB 0.012 0.072 0.034 0.030 0.044

(0.331) (1.101) (0.925) (0.965) (0.883)

ΓHP -0.172*** -0.213*** -0.191*** -0.183*** -0.198***

(-3.872) (-4.121) (-4.357) (-4.541) (-3.504)

Observations 10,191,799 2,092,119 10,433,753 8,595,405 1,838,348

Entity FE Yes Yes Yes Yes Yes

SEs Robust Robust Robust Robust Robust

Subsample Excluding EA Only EA Full Sample since 2000 Excluding News Only News

36



Fig. 1. Hedging Pressure Over Time.
Shows the cross-sectional distribution of the gamma imbalance ΓIB and our hedging
pressure proxy ΓHP over time. The dark teal line represents the cross-sectional median,
the teal area the 25th/75th percentile, and the light teal area the 10th/90th percentile.
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Fig. 2. Intraday Volatility Distribution
Shows the intraday volatility distribution of the 6551 companies in our sample from 1996
through June of 2019, split by the median market capitalization in the month before.
Realized volatility is calculated as the annualized sum of 5-minute returns per stock i
during the respective time period. The figure follow standard box plot convention, with
the box representing the 25th and 75th percentile, the line in the box the median, and
whiskers the 10th and 90th percentile.
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Fig. 3. Occurrences by Size of Company
Shows the number of occurrences individual stocks make in our sample, conditional on
them falling above or below last month’s median market capitalization. Since large stocks
are typically included for a longer time, the histograms appear of unequal size. However,
the sample sizes are the same, since the total number of occurences is the product between
x- and y-values.
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Appendix A. Cleaning of High-Frequency Data

To analyze intraday momentum effects in individual stocks, we rely on the NYSE

Trades and Quote (TAQ) database for January 1996 through July 2019. Since the NYSE

provides the raw tape of all trades performed on the included exchanges, multiple cleaning

steps are required. Additionally, we merge the TAQ database with CRSP to use the

PERMNO as a unique identifier per common share of any company.

A.1. Cleaning Procedure

We retain only trades with trade correction indicators “00” an “01”, which refer to

correctly recorded trades, and those that have been subsequently altered, but reflect the

actual trade price at the time. We further keep only trades with trade sale corrections

”Z”, ”B”, ”U”, ”T”, ”L”, ”G”, ”W”, ”K”, and ”J”, as well as an accompanying ”I”

reflecting odd lot trades. To rely on trade prices during regular trading hours only, we

discard all observations before 9:30 and after 16:01. We explicitly include the minute of

4pm, as many closing trades (denoted by sale conditions ”6” or ”M”) fall within the first

few seconds afterwards.

If multiple trades occur at exactly the same point in time, we take the median price

as the “correct price”. To make sure that prices are consistent by Ticker, we employ a

bounce-back filter following Andersen, Bondarenko, and Gonzalez-Perez (2015), which

effectively checks whether any trade’s price deviates by more than 15 times the median

absolute deviation of the day. If this is the case, we will kick this observation if we observe

a reversion to the previous price within the next five minutes, or 10 trades, whichever

encompasses more trades. We also drop price observations which deviate by more than

two times |log(pt/p̂)|, where p̂ is the median for the day. We choose trade-based filters to

check for the internal consistency, instead of relying on the Quote database also provided

by the NYSE, as some observations are falsely recorded in both. Afterwards, we span a

minute-by-minute grid between 9:30 and 16:01 and map trades to these trading minutes,

taking the volume-weighted average price within each minute to limit the impact of

microstructure noise and single trades.

A.2. Merge with CRSP

The TAQ database provides intraday trade prices, but lacks information about dis-

tributions, mergers, and delistings. We obtain this information from CRSP, as the low-

frequency database in financial economics.

We use the PERMNO provided by CRSP as an identifier that is unique over time.

In a first step, we merge the historical CUSIP by CRSP (NCUSIP) with the CUSIPs in

the master file taken from TAQ. In some occasions, we cannot merge available tickers in
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the trade file this way, and in a second step merge the two databases by the root ticker

and ticker suffix, which indicates different share classes. We keep only stocks with share

codes 10 and 11, denoting common shares, as well as exchange codes 1, 2, 3, 31, 32 and

32, representing the NYSE, AMEX and NASDAQ, respectively. Using this procedure, we

can merge most stocks for which we have intraday data available and cover most of the

CRSP sample. Since we are interested in the impact of market maker hedging activity, we

retain only those stocks that are optionable, i.e. for which options have traded between

1996 and July of 2019.
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Appendix B. Alternative Window Length for ADV

Throughout our main analyses, we have chosen a one-month time period for computing

the average dollar volume (ADV) for each stock. In Table B1 and Table B2, we vary

the time period to weekly and quarterly, respectively. The choice of window length is

inconsequential for our results.

Table B1: Gamma Expsoure with Weekly ADV
The table reports the results to regressing returns in the last half hour of a trading
day on Γ-imbalance ΓIB and market maker hedging pressure ΓHP , following Equations
6 - 8. Coefficients are scaled by 100 and t-statistics are in parentheses below. The t-
statistics follow Thompson (2011) and cluster by time and entity, as well as account for
common shocks across time. ***, **, * denotes significance at the 1%, 5%, 10% level. We
include entity fixed effects in all specifications and weight returns by the stock’s market
capitalization. The sample covers 1996 through June 2019.

(1) (2) (3) (4)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close

ΓIB 0.011 0.019

(0.375) (0.624)

rclose−1→15:30 0.873*** 0.873*** 0.398*

(3.202) (3.203) (1.947)

ΓHP -0.177*** -0.177***

(-4.406) (-4.417)

(ΓIB ≤ 0)× rclose−1→15:30 1.207***

(2.973)

Observations 12,283,918 12,283,918 12,283,918 12,283,918

Entity FE Yes Yes Yes Yes

SEs Robust Robust Robust Robust
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Table B2: Gamma Expsoure with Quarterly ADV
The table reports the results to regressing returns in the last half hour of a trading
day on Γ-imbalance ΓIB and market maker hedging pressure ΓHP , following Equations
6 - 8. Coefficients are scaled by 100 and t-statistics are in parentheses below. The t-
statistics follow Thompson (2011) and cluster by time and entity, as well as account for
common shocks across time. ***, **, * denotes significance at the 1%, 5%, 10% level. We
include entity fixed effects in all specifications and weight returns by the stock’s market
capitalization. The sample covers 1996 through June 2019.

(1) (2) (3) (4)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close

ΓIB 0.004 0.017

(0.109) (0.406)

rclose−1→15:30 0.864*** 0.865*** 0.398*

(3.152) (3.152) (1.947)

ΓHP -0.174*** -0.174***

(-3.920) (-3.928)

(ΓIB ≤ 0)× rclose−1→15:30 1.207***

(2.973)

Observations 12,283,918 12,283,918 12,283,918 12,283,918

Entity FE Yes Yes Yes Yes

SEs Robust Robust Robust Robust
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Appendix C. Scaled Returns

Throughout our main analyses, returns in the regression are weighted by each stock’s

market capitalization on day t − 1. In order to achieve a meaningful comparison across

assets with different volatilities, Moskowitz et al. (2012) propose to scale the returns of

stock i by an ex-ante measure for stock i’s volatility, σit−1. We follow Moskowitz et al.

(2012), but apply their volatility model to a higher frequency, as we are working with

intraday returns. Precisely, we calculate σit−1 as follows

σip,t−1 =

(
∞∑

∆=0

δ(1− δ)∆RV i
p,t−1−∆

) 1
2

,

where RV denotes the realized volatility using the five-minute returns during the respec-

tive period p over which returns on the target day are considered. As in Moskowitz et al.

(2012), we set the center of mass to δ
1−δ = 60 days.

Subsequently, we standardize the returns as follows

r̃iclose−1→15:30 =
riclose−1→15:30

σiclose−1→15:30,t−1

, (C1)

r̃i15:30→close =
ri15:30→close

σi15:30→close,t−1

. (C2)

We use time t−1 volatility estimates for time t returns to circumvent any forward looking

biases through scaling.

Next, we estimate Equations (5) to (8) with the scaled returns from Equations (C1)

and (C2). Results are tabulated in Table C1.
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Table C1: Intraday Return Regressions with Scaled Returns
The table reports the results to regressing scaled returns in the last half hour of a trading
day on scaled returns until 15:30, rclose−1→15:30, Γ-imbalance ΓIB and market maker hedg-
ing pressure ΓHP , following Equations 5 - 8. Scaled returns are defined in Equations (C1)
and (C2). Coefficients are scaled by 100 and t-statistics are in parentheses below. The
t-statistics follow Thompson (2011) and cluster by time and entity, as well as account for
common shocks across time. ***, **, * denotes significance at the 1%, 5%, 10% level.
We include entity fixed effects in all specifications. The sample covers 1996 through June
2019.

(1) (2) (3) (4) (5)

Dependent r15:30→close r15:30→close r15:30→close r15:30→close r15:30→close

rclose−1→15:30 2.809*** 3.045*** 3.045*** 2.315***

(3.397) (3.458) (3.460) (3.433)

ΓIB 1.963 2.290

(0.908) (1.043)

ΓHP -12.908*** -12.953***

(-3.471) (-3.482)

(ΓIB ≤ 0)× rclose−1→15:30 2.074***

(2.593)

Observations 12,282,876 12,282,876 12,282,876 12,282,876 12,282,876

Entity FE Yes Yes Yes Yes Yes

SEs Robust Robust Robust Robust Robust
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